

#### **Institute of Technology of Cambodia**

#### Regeneration process analysis of the resin Haix used from Arsenic affected community in Cambodia

2<sup>nd</sup> International workshop Energy, Environment and Ecosystem (3E) Nexus initiative for sustainable development in Asian countries Bali, February 26, 2015

HUL, Seingheng, Ph.D

# Content

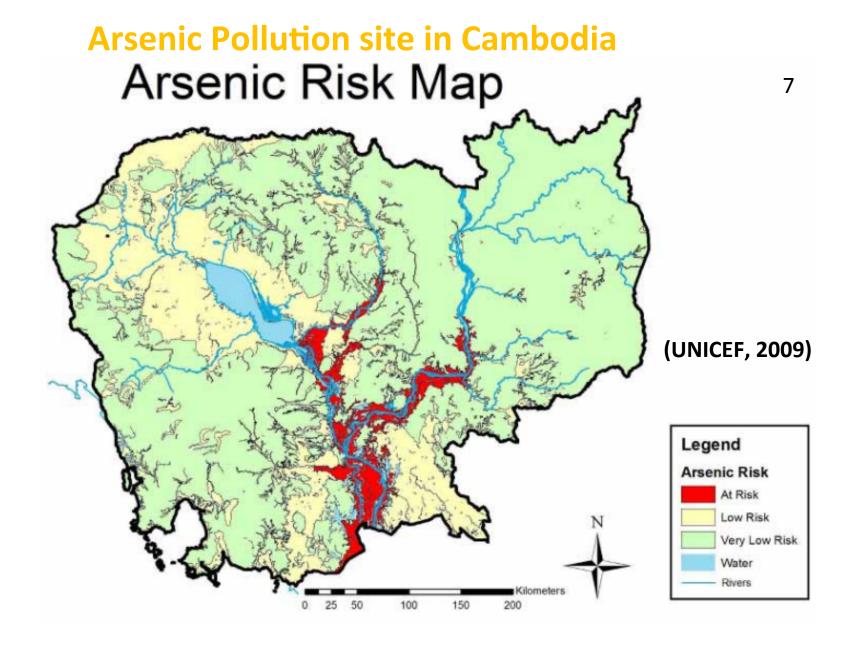
- •Introduction
- •As contamination and Arsenicosis
- SARSAC and Haix regeneration
- •Results
- Conclusion and Recommendation
- •NEXT...

## Introduction

- Arsenic is odorless and tasteless semi metal that occurs naturally in the rock and soil (FAO, 2006)
- The arsenic pollution in the groundwater became a serious problem on health of Cambodian people (Uy, 2010)
- The consumption over long period of time of arsenic water in excess of 10 micrograms per liter can lead to Arsenicosis (WHO, 2011)
- Seeing this issue, different water sources are used currently by the community such as: well, surface water, water from SARSAC, rain water, etc.

## Introduction

Identify regeneration condition for exhausted Haix used in the affected community of Cambodia


- To optimize the best pH for generation process
- To analyze the presence of Arsenic in Haix before and after the treatment at different pH
- To test the performance of regenerated resin

## **Arsenic Contamination**

- Found in the groundwater system and can infiltrate to underground aquifers
- UNICEF (2009), arsenic in Cambodia was confirmed between 1990 and 2000 cooperated with MRD and MIME
- Testing the water from about 16,000 tube wells for arsenic in 7 central provinces bordering the Mekong and Bassac rivers (including Kandal, Kampong Cham, Kratie, Kampong Chhnang, Kampong Thom, Prey Veng and peri-urban Phnom Penh provinces) found that an estimated 320,000 people in 1,600 village are most at risk (MRD, UNICEF, Kanchan Arsenic Filter Evaluation of Applicability to Cambodia, September, 2008).

#### Arsenic contamination level in Cambodia (Arsenic Center, 2009)

| Provinces       | Total wells<br>tested | As >50 ppb | 10 < As ≤ 50 ppb | As≤10 ppb |
|-----------------|-----------------------|------------|------------------|-----------|
| Kandal          | 4,779                 | 2,260      | 503              | 2,015     |
| Peri-urban PP   | 612                   | 33         | 109              | 470       |
| Kampong Cham    | 1,576                 | 218        | 88               | 1,270     |
| Kampong Chhang  | 662                   | 24         | 69               | 569       |
| Kratie          | 1,248                 | 94         | 116              | 1,038     |
| Prey Veng       | 1,712                 | 267        | 162              | 1,283     |
| Kampong Thom    | 828                   | 15         | 89               | 724       |
| Kg.Speu         | 529                   | 0          | 17               | 512       |
| Otdar Mean Chey | 147                   | 0          | 2                | 145       |
| Stung Treng     | 343                   | 1          | 24               | 318       |
| Svay Rieng      | 1,326                 | 8          | 424              | 894       |
| Krong Pailin    | 114                   | 4          | 5                | 105       |
| Preah Vihear    | 58                    | 0          | 5                | 53        |
| Pursat          | 1,236                 | 0          | 26               | 1,210     |
| Siem Reap       | 74                    | 0          | 0                | 74        |
| Takeo           | 429                   | 0          | 18               | 411       |
| Total           | 15,673                | 2,924      | 1,657            | 11,092    |



## Arsenicosis

# What is Arsenicosis?

• WHO, the common symptoms are Leukomelanosis (rain-drop pigmentation on skin) and Nodular Keratosis

#### Arsenicosis Symptoms Identified in Kandal Province, (UNICEF, 2009)



Arsenical Nodular Keratosis: a picture from Kandal province- this woman and her family have similarly affected and her symptom has recently lead to cancer, reported by PDRD As team.



Arsenical Nodular Keratosis: a picture from Kandal province- a man with his son has serious problem with cancer; his son was operated with support from RDI.



Arsenical Leukomelanosi- picture from Kandal province.



9

#### Arsenicosis Symptoms Identified in Preaek Traeng

10



Further stakeholder analysis is a need for long term solution such as: Source Identification, socio-economic study, involvement of stakeholders...

#### **Bad Effect from Arsenic Contamination**<sup>11</sup>

Dermal lesions such as hyperpigmentation and hypopigmentation

- Skin cancer,
- ► Bladder and lung cancers and
- Agricultural production. Change, complexity, uncertainty

#### **Arsenic awareness**

- Khaira, P., (2009) estimated that up to a million people in Cambodia are at risk.
- Not much people are aware of arsenic and received mitigation and education
- Scientific attention in Cambodia so far has tended to focus on technical solutions.

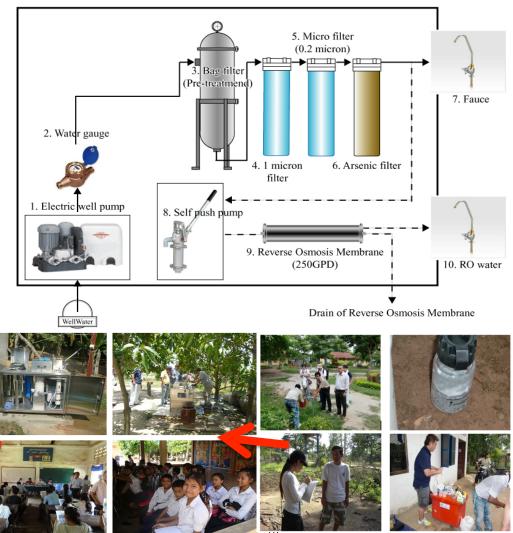
#### **Drinking Water Sources for Community** <sup>13</sup>

• KAP (Knowledge, Attitude, Practice) survey by UNICEF (2009) surface water is the source of drinking water

>40% relied on surface water

 $\geq$  22% relied on tube-wells in dry season and 17% in the rainy season

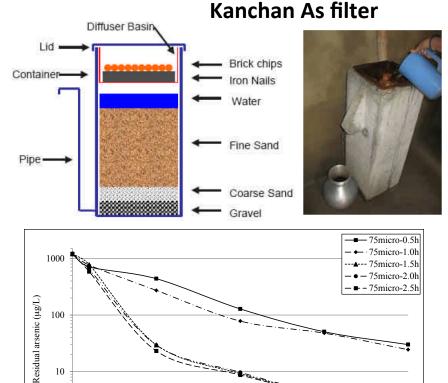
>And approximately 13% relied on unprotected shallow wells


## **Our Past experiences**

#### Removing Arsenic from Groundwater using High Performance Iron Adsorbent in Cambodia:

- The analysis results indicated that around 95% of As was removed in average by using the equipments, which ranged from 89-100%
- Efficacy is good, but effectiveness is a challenge and the system need more research on it application








## **Our research experiences**

10

- Air oxidation of arsenic
- Kanchan Arsenic Filter Evaluation of Applicability to Cambodia: The average removal percentage is in the 95-97% range, difficult for high As concentration water
- Laterite as an adsorbent material for removing arsenic from polluted groundwater in Cambodia (Local resources: Efficacy is high (respect WHO standard)



Laterite from K. Cham

10 13 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50

Adsorbent dose (g/L)

15

#### **Drinking Water Sources for Community** 16

• SARSAC:

Supported by: Dr. Arup Sengupta, (Haix), Lihigh University, US and Japan International Cooperation agency







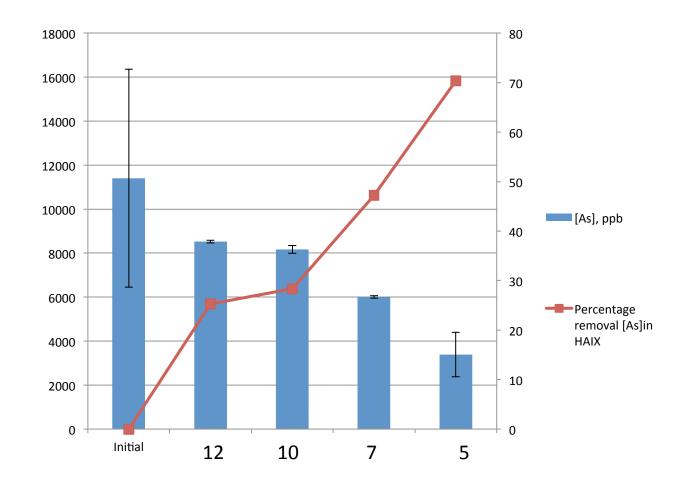


Sustainable arsenic removal system for affected communities (SARSAC)

## Water test after Sarsac installed <sup>17</sup>



## **Haix Regeneration**


- pH treatment for pH ranging from base to acidic condition: 12, 10, 7, and 5
- Testing the initial concentration of Arsenic present in the saturated resin
- Testing the arsenic concentration present in the treated resin
- Then, the regenerated resin is tested with Arsenic spike solution of 583 ppb
- Experiment of testing was conducted through the analysis with Atomic absorption spectroscopy (AAS) with HVG
- Experimental process: pH remains near 12.0; spent alkali is collected. After a thorough rinse with As-free water, the media is subjected to two bed volumes of dilute HCl solution to neutralize the media so that resultant solution pH is down to 10, 7, and 5; subsequently, the spent acid is collected.

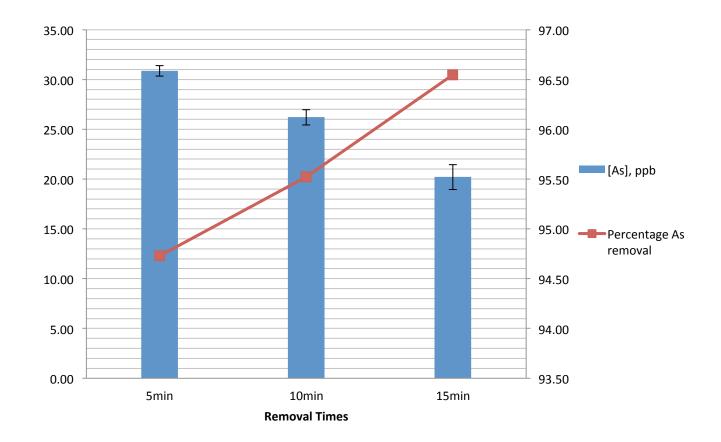
### RESULTS

Table showed that arsenic concentration and ferric oxide concentration in the Haix was down slowly but much concentration was released to acid medium.

| Samples     | A(n=3)  | B(n=3)   | C(n=3)   | D(n=3)   |
|-------------|---------|----------|----------|----------|
| Statistic   | pH-12   | pH-10    | pH-7     | pH-5     |
| [As], (ppb) | 8519±65 | 8165±190 | 6013±61  | 3385±102 |
| [FeOH], ppm | 1898±28 | 1614±32  | 1457 ±76 | 1565±340 |

The initial concentration of As in Haix: 11403 ppb




Removal performance of As in HAIX at different pH treatment

## **Result of resin HAIX testing after regeneration**

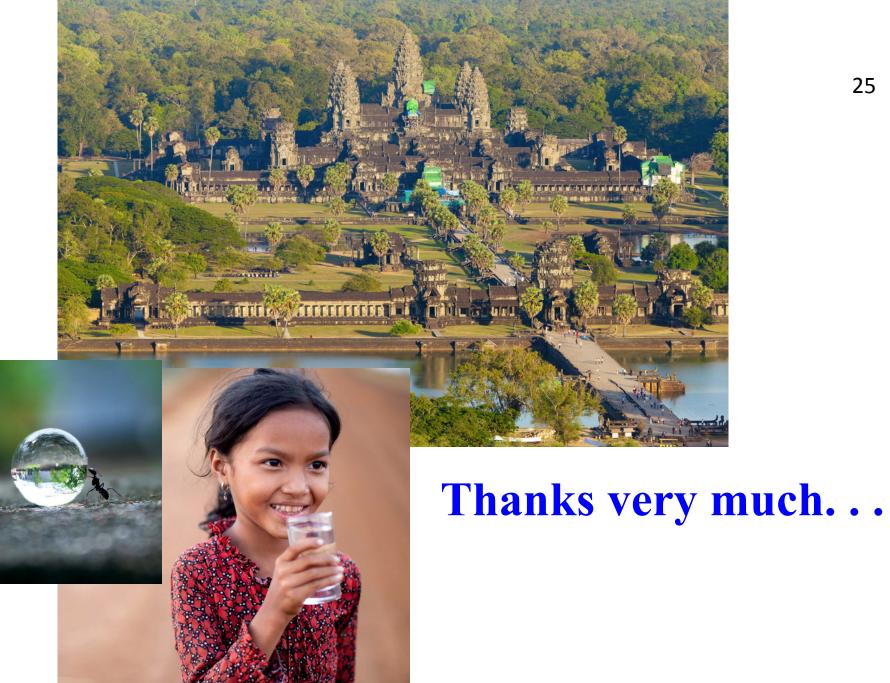
After regeneration, resin HAIX was tested ability remove arsenic with different time 5min, 10min, 15min.

Test ability resin HAIX after regeneration

| Samples      | N=9        |            |            |  |  |
|--------------|------------|------------|------------|--|--|
| Removal Time | 5min       | 10min      | 15min      |  |  |
| [As], ppb    | 31.36±0.58 | 27.11±1.16 | 21.22±1.07 |  |  |



Performance of arsenic concentration after test removal with solution  $[As]_{in}$ =583ppb and percentage abilities remove As of regenerated Haix


#### CONCLUSION

- The arsenic concentrations attached to the arsenic-saturated resin was 11403 ppb and it decreases to 3385 ppb at the optimized pH of 5
- As the results of experimental, this regeneration process allows the removal of arsenic from HAIX around 70%.
- The regenerated resin has still performed well for removing the arsenic from the contaminated water since it can remove the As more than 95%. The resin is again active.
- it is concluded that the regeneration technique has been established for exhausted resins HAIX used in the arsenic-affected community in Cambodia

## Next ...

- 3 more systems are being installed through the support of AUN/Seed-Net JICA with the support from Lehigh University, USA
- 1 system is going to be installed in LAO in collaboration with National University of Lao through the same fund
- Standardize the regeneration system
- One more system to be installed in Lvea Torng Village of Kandal province
- Family scale system SARSAC
- Aresenic occurrence in In Mekong river of Cambodia





hul@itc.edu.kh