

NUS Environmental Research Institute

Innovating Water Treatment Technologies in Managing Water-Energy Demand

L.Y. Lee, <u>S.L. Ong</u>, J.Y. Hu and H.Y. Ng Centre for Water Research, Department of Civil & Environmental Engineering;

NUS Environmental Research Institute, National University of Singapore

THE SINGAPORE POPULATION 2012 TOTAL POPULATION: 2030 TOTAL EST. POPULATION: TOTAL ATION:

Pictures taken from Wikimedia Commons

Pictures taken from Wikimedia Commons

Source: National Population and Talent Division White Paper Graphic: Channel NewsAsia

Singapore's Four National Taps: Water Demand & Supply Flow

Growing needs of Industrial Water

DEMAND AND SUPPLY 2010 & 2060

Singapore's daily water demand from the domestic sector and the non-domestic sector are met by a blend of the Four National Taps. NEWater is supplied mainly to the non-domestic sector.

http://www.pub.gov.sg/LongTermWaterPlans/gwtf.html

NEWater and Industrial Water Supply for non-domestic use can free up potable water for consumption

NEWater Process

Water Quality Comparisons

Water Quality Parameters	Local Reservoir Water	PUB Tap water	NEWater	USEPA / WHO Standards
Turbidity [NTU]	0.5 - 11	< 0.1	< 0.1	5
Total Dissolved Solids [mg/l]	117 - 154	149.5	48.5	500
Lead [mg/l]	< 0.013	0.002	< 0.0005 to	0.01
			0.002	
Mercury [mg/l]	<0.00003	<0.00003	<0.00003	0.001
Hormones (Synthetic & Natural) [µg/l]	ND	ND	ND	Not Specified
PCBs [µg/l]	ND	ND	ND	0.5
Dioxin [pg/l]	ND	ND	ND	30
Total Organic Carbon [mg/l]	2.6 - 6.2	1.9 – 3.5	<0.1	Not Specified
Total Coliform [cfu/100 ml]	3 - 967	ND	ND	ND
Enterovirus	ND		ND	ND

Emphasis on Energy & Water Efficient Technologies

PROCESS CHANGE & NEW TECHNOLOGIES in Wastewater Treatment & Water Reclamation

Wastewater Treatment

Anaerobic Processes

High Rate Anaerobic Treatment Designs

Anaerobic filters

Anaerobic

Sludge

Blanket

(UASB)

Sequencing Batch Anerobic Reactor (AnSBR)

Anaerobic Membrane Bioreactor (AnMBR)

Advantages:

- Compact small footprint
- Low energy requirement
- Ability to withstand shock loading and treats from toxicants
- Bioenergy production

Aerobic post-treatment system performance at HRT 4 h treating anaerobic effluents (HRT = 6 h)

	Influent WW	UASB Effluent	CAS Effluent	MBR Effluent	
SS (mg/l)	248 - 850 (440)	200 – 425 (322)	4 – 41 (18)	N.D.	
VSS (mg/l)	196 – 425 (350)	64 – 196 (134)	3 – 28 (12)	N.D.	
tCOD (mg/l)	318 – 766 (562)	101 – 329 (227)	19.6 - 68.2 (42.7)	6 9 27 F (22 2)	
sCOD (mg/l)	36 – 157 (93)	34 - 84 (57)	10.5 - 34.3 (21.2)	0.0 - 37.3 (23.2)	
tBOD ₅ (mg/l)	122 – 330 (230)	41 – 151 (79)	1.7 – 13.9 (6.3)	0.1 – 1.5 (0.8)	
sBOD ₅ (mg/l)	17 – 75 (35)	11 – 34 (19)	0.7 – 2,3 (1.3)		
NH ₄ ⁺ -N (mg/l)	31 – 83 (43)	25 – 61 (41)	N.D.	N.D.	
NO ₃ ⁻ -N (mg/l)	N.D.	N.D.	25.6 - 58.0 (41.3)	23.3 – 47.1 (33.9)	

Estimation and Comparison of IAATP and AS

- Average Influent Flow = 325,000 m³/d; Average Influent total Chemical Oxygen Demand = 590 mg/L
- Discharge: BOD5 = 10 mg/L; SS = 20 mg/L

Parameter	IAATP	AS
Overall Plant Energy Consumption (kWh per 1000 m ³ of wastewater treated)	61	195
Aeration Energy Consumption (kWh per 1000 m ³ of wastewater treated)	57 (without nitrogen oxygen demand)	181 (without nitrogen oxygen demand)
Sludge Production (kg per 1000 m ³ of wastewater treated)	116	280
Total Reactor Footprint (m ²)	44,442	56,300

Wastewater Treatment

Membrane Bioreactors

MBR Demonstration Plant at Ulu Pandan WRP

- Capacity: 23,000 m³/d
- Feed: Primary settled domestic sewage effluent
- Energy requirement: designed less than 0.7 kWh/m³
 - → system optimization enabled the plant to be operated at 0.4 kWh/m³

Anaerobic MBR for Domestic Wastewater Treatment

• Effect of SRT (30, 60 and 90 d)

Parameter	Feed (Concentration/Value)
COD, mg/l	426.77± 59.41
TOC, mg/l	56.99 ± 10.17
Ammonium, mg/l	57.43 ± 5.54
TN, mg/l	50.3 ± 9.20
рН	\sim 7.0
Temperature, °C	$25\sim 30$

COD Removal Efficiency of ~85%^{1/2}/⁵
Effluent COD: 62 to 69 mg/L ⁵

time (d)

Main Challenge in MBR Process Optimization

SRT Impact on MBR Fouling

- Submerged MBR operated at less than 5 days experienced rapid fouling.
- Fouling rate dependent on the amount of SMP (particularly the carbohydrates) and NOT the concentration of MLSS.

Reference: Ng et al. (2006) Environ Sci. & Tech., 40 (8), 2706-2713.

Effect of Membrane Pore Size on MBR Fouling

- The biggest pore-sized ceramic membrane had the highest fouling potential, while the ceramic membrane with the smallest pore size encountered least fouling.
- ***** Rougher membrane fouled faster.

α-Al2O3 /TiO2/ZrO2
α-Al2O3
3300/1450/1450/260
L/m2*h*bar
300/200/100/80nm

Enhancing Water Reclamation Process: Integrating MBR-RO for NEWater Production

 Integrating Membrane Bioreactor with Reverse Osmosis (MBR-RO) provides a new option for NEWater production

Qin et al. (2006). "New option of MBR-RO process for production of NEWater from domestic sewage". *Journal of Membrane Science*, 272, 70-77.

Integrating MBR-RO for NEWater Production

- MBR operated at a
 - SRT: 20 days and HRT: 5.5 h
- Overall recovery efficiency : 80%.

Water Reclamation

Membrane Processes

Fouling Management

Fouling Measurement

Observations from Full-Scale RO System

Time

Laboratory and Full-Scale System

 Fouling behavior can be very different between lab and full-scale RO processes

 \neq

Full-scale RO is less sensitive to initial fouling

Effect of Channel Length

- Short channel has high average flux
- Constant average flux does not appear for 1 m
- The period of constant flux increases with channel length
- Fouling cannot be "seen" in the initial stage
 - Flux decline is not a good indicator for fouling

Flux Controlling Mechanisms

Fouling Development

Effect of Water Fouling Potential

- Average permeate flux is strongly affected by feed water quality
- The figure shows:
 - Effectiveness of pretreatment can be assessed by fouling potential
 - Water quality is linked to performance of fullscale RO

Fouling Characterization Index

A effective fouling characterization index can be defined by the following equation:

where
$$F = \int_{0}^{L} \frac{1}{R_{m}(x)} dx$$

- **F**_o : Initial filtration coefficient
- *F*_t : Measured filtration coefficient at time t

EXAMPLES

Case 1: No fouling, $F_t = F_0$, so that $I_f = 0$

Case 2: Most serious fouling, $F_t = 0$, so that $I_f = 1$

Effectiveness of Cleaning Protocols

Configuration Management

Performance Enhancement

- Demo-scale study (16inch RO system)
- Modeling of flow distributor using CFD and reverse osmosis process
- Membrane fouling study

Forward Osmosis (FO)

FORWARD OSMOSIS (FO) PROCESS

- Natural phenomenon using osmotic driving force
 - 1.5M (117,000 ppm) Na_2SO_4 solution \rightarrow 74 bar OP
- Main advantage: Low pumping energy requirement
- Estimated energy requirement is ~ 15 28% of the current desalination technologies

FO-MBR CONCEPT

FO-MBR : LAB-SCALE SYSTEM

NORMALIZED FLUX – A FOULING INDICATOR

- Normalized water flux indicated insignificant flux decline, flux decline by fouling was minimal.
- 3 MCRTs normalized water flux were similar → fouling similar

NF PERMEATE QUALITY

MCRT	TOC	COD	TDS	TN	NO₃ ⁻ -N
(day)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
3	< 1	7.5 ± 8.1	356.0 ± 64.6	26.3 ± 4.4	28.4 ± 7.5
5	< 1	5.9 ± 6.5	336.8 ± 93.3	28.5 ± 5.8	32.0 ± 9.1
10	< 1	6.5 ± 6.5	389.2 ± 82.1	31.6 ± 7.4	34.0 ± 10.5

- TOC and COD removal above 97.6% for all MCRTs studied.
- High TN (NO₃⁻-N) in permeates suggests requirement to include anoxic mode in FO-MBR operation.

Water Reclamation

Capacitive Deionization (CDI) Process

Technology for RO reject treatment & recovery needs to address two major pollutants in RO reject:

- 1. Recalcitrant organics
- 2. Salts retained by RO membrane

RO Reject Treatment & Recovery NEWater Factory Treated effluent **NEWater** RO UV MF/UF 75% to 95% Brine 25% to 5% Treatment **RO** Reject Harnessing more water with RO reject treatment

organics

Removal of salts

Pilot CDI Unit

- Power consumption is estimated at 0.85 kWh/m³
- Lower than the target of 1 kWh/m³ computed based on a pressuredriven membrane process

Water Quality (BAC Pretreatment)

Parameter	Water quality			
	RO brine	BAC effluent	CDI effluent	CDI permeate
Conductivity (mS/cm)	1490	1500	314	9.97
TDS (mg/L)	974	906	173	6.15
TOC (mg/L)	19.6	2.53	0.96	<0.1
COD (mg/L)	68.4	2.5	<2	-
SiO ₂ (m/L)	36.4	34.9	34.7	0.25
Anions (mg/L				
CI	176	198	46.4	1.47
NO ₃ -	122	148	29.2	0.9
PO ₄ ²⁻	43	39.8	15.2	<0.08
SO ₄ ²⁻	198	207	10.2	0.14
Cations (mg/L)				
Na⁺	189	179	51.7	1.23
K+	53.2	53.6	12.2	0.112
Mg ²⁺	6.97	6.97	0.786	<0.027
Ca ²⁺	63.2	57.8	5.66	0.037

A Search for Energy Efficient Technologies

Singapore's National Research Foundation -Environment and Water Industry (NRF-EWI) Roadmap includes:

Water Reclamation Systems

Energy Self-sufficiency in Wastewater Treatment

- To reduce the energy consumption in municipal wastewater treatment by 80% or less than 0.1 kWh/m³

Seawater Desalination

To achieve energy efficient desalination system < 0.75 kWh/m³

https://rita.nrf.gov.sg/ewi/default.aspx

Thank you

NUS Environmental Research Institute