

Solid Waste Management in Quezon City, Metro Manila

Maria Antonia N. Tanchuling University of the Philippines Diliman 3E Nexus Workshop 17 January 2017 Tokyo, Japan

National Regulations on SWM

Quezon City

- Located in the National Capital Region (NCR)
- Most populated (3.2 M) and wealthiest city in the Philippines
- Site to many government offices and academic institutions
- Situated in the Guadalupe plateau which is a relatively high plateau

Climate data for Quezon City												
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average high °C (°F)	29	31	32	34	34	31	30	30	30	30	30	29
	(84)	(87)	(89)	(93)	(93)	(87)	(86)	(86)	(86)	(86)	(86)	(84)
Average low °C (°F)	18	19	21	22	23	23	23	23	23	22	21	20
	(65)	(66)	(69)	(71)	(73)	(73)	(73)	(73)	(73)	(71)	(69)	(68)
Precipitation mm (inches)	18	8	5	23	150	360	503	516	373	224	163	69
	(0.7)	(0.3)	(0.2)	(0.9)	(6)	(14)	(19.8)	(20.3)	(14.7)	(8.8)	(6.4)	(2.7)

City Ordinances

• Effective September 2012

- SP-2140 Plastic Bag Reduction Ordinance
 - Regulates the use of plastic bags and establishing an environmental fee for its use

• SP-2103

 Mandates all business establishments to display a notice that encourages customers to bring their own reusable bags

Waste stream

Segregated collection

- Biodegradable (Monday, Tuesday, Friday Saturday)
- Non-biodegradable (Wednesday, Thursday)

Waste generation

2016 Projected Population	3,177,435
Per capita waste generation	0.88 kg/pax/day
Waste Generation	2881 tons/day (2016 projected population based on 2010 census)
Average amount of waste disposed at QCCDF (Payatas)	1609.79 tons/day
Waste density	266 kg/m ³
Average waste disposal rate	0.51 kg/cap-day

Waste composition (weight)

Comparison of composition (by collection schedule)

Waste Fraction	N(%)						
	Primary Data	Secondary Data	Author	Sample Source			
Garden and Park Waste	0 /	0.70 ^h	^h Rosen, Halbach and Mugaas (2000)	Yard waste (Minessota, USA)			
	.84	1.15 ^j	^j Moller et. al. (2016)	Various yardwaste compost (Germany)			
Food Waste	1.0	4.68 ^g	^g Kadir, Ismail and Jamaludin (2015)	Makanan Ringan Mas – Industrial Plant (Malaysia)			
		0.7-13.30 ⁿ	"Nagy et. Al. (2014)	University's Cafeteria (Hungary)			
Wood Waste		0.09 ^h	^h Rosen, Halbach and Mugaas (2000)	Wood (Minessota, USA)			
	1.61	0.1-0.34	^I Jerger et. al. (1982)	Various species of wood trees (Several states of USA)			

- Oldest (since 1973) and largest dumping facility in the Philippines
- Average number of Trucks : 411 trucks/day
- Average waste intake: 1,600 tons/day
- Land Area
 - Old Mound \rightarrow 12 hectares
 - New Mound \rightarrow 10 hectares

History of QC Disposal Facility (Pavatas)

1970 - Start of waste dumping in Payatas
1993 - Payatas became the main disposal site for Metro Manila waste
1998 - Approval of closure plan

2001 - QC resume dumping operation in Payatas

2004 - Conversion to Controlled Disposal Facility

2010 - Closure of Payatas Disposal Facility

2011 - Opening of the Sanitary Landfill Facility, establishment of the Material Recovery Facility(MRF), and start of the Post Closure Care and Maintenance

Slope improvement

Slope Reprofiling

Dumpsite slopes, which previously ranged from 60 to 70 degrees were reprofiled and maintained at a more stable range of 23 to 25 degrees.

Benches were along the slopes to prevent global

Soil Covering and Compaction

The reprofiled slopes are covered with soil before compaction to improve stability and control erosion and the migration of dumpsite gas.

MWTS Waste to Energy FS

Greening of Slopes

NURSERY & GREENHOUSE facilities are maintained for the propagation of plants used for the greening of the dumpsite.

VETIVER GRASS (found to be effective for leachate treatment and erosion control) and other perennial and ornamental shrubs and trees were planted along dumpsite slopes.

Improved Drainage System

Improved the dumpsite's drainage system by separating the leachate collection system from the storm water drain.

The collected leachate goes to pumping stations for recirculation onto the soil-capped mounds to water the vetiver grass and other plants.

Developed and fortified internal and perimeter access roads

Other Facilities

City Dog Pound

Viewing Deck

LANDFILL GAS IN PAYATAS

Process Flow Diagram

FLARE

Major challenge

Payatas Controlled Dumpsite needs to be closed

- Option 1: Dispose waste in another landfill
- Option 2: Feasibility of Waste to energy?

Calorific value

	Component	Calculation		
	Waste composition	Calorific value	NCV (net calorific value)	
	% by weight	kJ/kg wet waste fraction	kJ/kg _{wet waste}	
Paper	13.6%	7,452	1,016	
Garden and Park Waste	21.0%	5,593	1,176	
Food Waste	20.7%	2,334	484	
Textiles	8.0%	13,053	1,039	
Wood Waste	5.6%	6,384	360	
Plastics	23.5%	31,190	7,330	
Glass	1.6%	0	0	
Metals	1.1%	0	0	
Rubber	1.4%	19,334	271	
Other	3.4%	0	0	
Total	100.0%		11,675	

Ratio of VS/TS

Waste Fraction	VS/TS						
	Primary Data	Secondary Data	Author	Sample Source			
Garden and Park Waste	.88	0.88 ^b	^b California Energy Commission (2005)	Green Waste (Norcal Waste Systems, Inc.) California, USA			
		0.97 ^c	^c Manios and Stentiford (2004)	Gardens and Park (United Kingdom)			
Food Waste	.93	0.85 ^b	^b California Energy Commission (2005)	Food Waste (Norcal Waste Systems, Inc.) California, USA			
		0.94 ^d	^e Kwon and Lee (2004)	University's Cafeteria - Cooked meals residue (Korea)			
		0.89 ^d	^d Roa and Singh (2004)	Food waste from fruit and vegetable market (India)			
Wood Waste	.92	0.98-0.99 ¹	^I Jerger et. al. (1982)	Various species of wood trees (Several states of USA) ₂₅			

Issues for waste to energy option

- Closure of current dumpsite will affect waste pickers
- Siting of facility (digester and/or incineration)
- Social acceptability of incineration
- Water requirements for digestion and incineration
- Needs land for ash disposal
- Sorting requires costs
- Market for compost

MARAMING SALAMAT!

.....