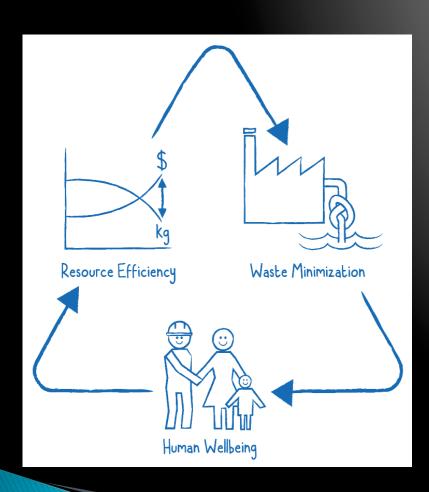
Renewable Energy through Biological Processes

Tjandra Setiadi, Ph.D., Prof.

Centre of Resource Efficient and Cleaner Production Indonesia (CRECPI)

Institut Teknologi Bandung (ITB)

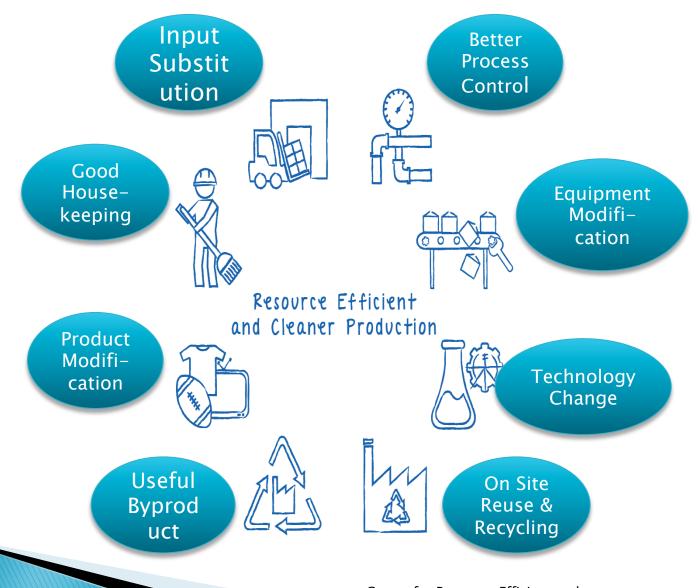
tjandra@che.itb.ac.id


Outline of Presentation

- Centre of Resource Efficient and Cleaner Production Indonesia (CRECPI)
- Current Energy Situation in Indonesia
- Projection of Energy Supply in Indonesia
- Renewable Energy
- Examples of Renewable Energy through Biological Processes
 - Anaerobic Treatment of Wastewater from different Industries
 - Microbial Fuel Cells
 - Hydrogen Production
- Challenges in the Future

Centre for Resource Efficient and Cleaner Production Indonesia (CRECPI)

- Established in 2014 by the Institute of Technology Bandung (ITB) to foster application of Resource Efficient and Cleaner Production in Indonesia
 - Through (applied) research and education
 - Co-implementation of the Swiss funded Resource Efficient and Cleaner Production Programme of the United Nations Industrial Development Organization (UNIDO)


Resource Efficient and Cleaner Production

Integrated and *continued* application of *preventive* environmental practices and *total* productivity techniques to processes, products and services to increase efficiency and *reduce risks* to humans and environment

Business Case

RECP: stepping stone towards sustainable innovation

Innovation Cradle (full return to to nature of discarded Innovation Cradle Green *product)* (benign chemicals & Chemistry & resource efficient **Engineering** processes) **RECP** Innovation (closure of waste **Industrial Improvement** cycles in industrial Symbiosis park)

Indonesia RECP Programme

 Networked initiative to foster RECP implementation at scale and at speed in Indonesia

> Sectors (food, textile, metal & chemical)

Industrial Zones (Makassar, Batam & Surabaya)

Micro-Industries (palm sugar, coffee) Tourism
Destinations
(Sleman/
Magelang &
Bintan)

1. RECP Capacity & Network

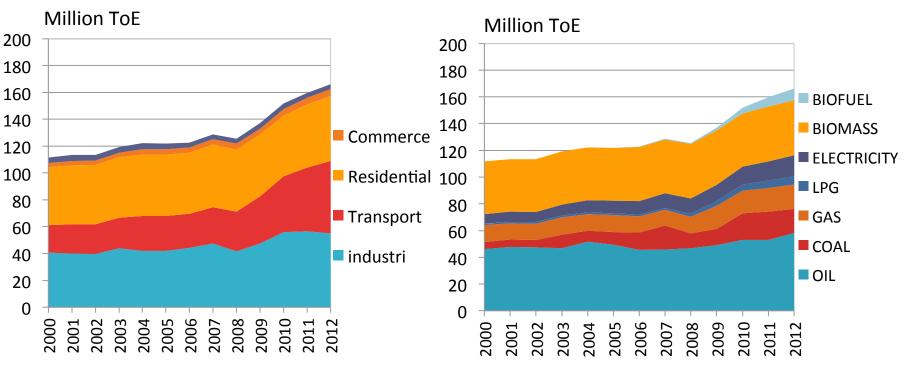
2. RECP Implementation & Replication

3. RECP Policy & Strategy

4. RECP Technology & Innovation

5. RECP Finance & Investment

CURRENT ENERGY SITUATION IN INDONESIA

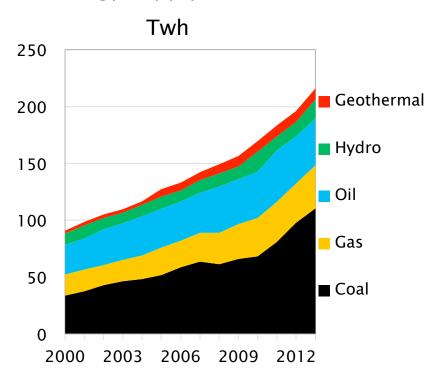

CURRENT ENERGY SITUATION IN INDONESIA

Current Energy Demand Development

Final ENERGY DEMAND By Sector

FINAL ENERGY DEMAND By Type of Fuel

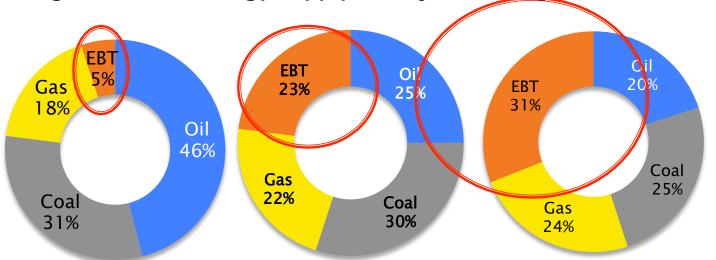
source: Pusdatin—MEMR


By sector, demand is dominated by demand from industry, transport, and residential. Commercial sector demand is relatively small (4%)
 By type of fuels, demand is dominated by oil, Biomass is used primarily used in rural residential, Biofuel growth is significant in the past five years

CURRENT ENERGY SITUATION IN INDONESIA

Current Energy Supply Development

Energy Supply Mix in Power Sector


- Dominated by coal which grew steadily since 2000
- Oil is used in distributed diesel generators in remote areas. Installed in 80s and 90s for boosting electrification
- Renewable share is still low.

source: Pusdatin—MEMR

PROJECTION OF ENERGY SUPPLY IN INDONESIA

Target of Mixed Energy Supply [Kebijakan Energi Nasional, PP No.79/2014]

EBT - New & Renewable Energy will be increased to 23% in 2025 (from 5% in 2013)

194 MToe (2013) 400 MToe (2025)

1000 MToe (2050)

TARGET	Unit	2013	2020	2025	2050
Primary energy supply	MToe	194	290	400	1.000
Primary energy/capita	Toe	0,8	1,1	1,4	3,2
Power Plant Capacity	GW	51	79	115	430
Electricity per capita	KWh	776	1308	2.500	7.000

Average growth till 2025:

Energy supply 6.2% per year; Power Plant 7% per year;

Renewable Energy

Wind

Solar

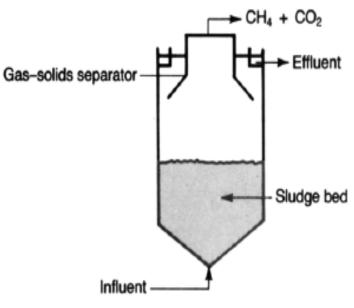
Hydro

Geothermal

Examples of Renewable Energy through Biological Processes (carried out in our Laboratory at ITB)

- Anaerobic Treatment of Wastewater from different Industries
- Microbial Fuel Cells
- Hydrogen Production

Anaerobic Treatmentof Wastewater from different Industries

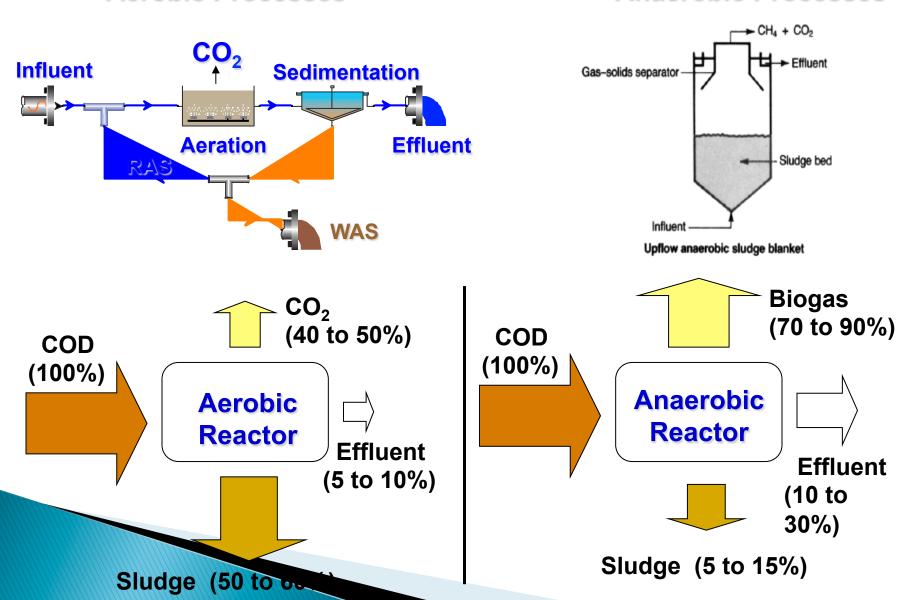

Biological Treatment of Organic Wastes

Aerobic vs Anaerobic Treatment

Aerobic Processes

Influent Sedimentation Aeration Effluent WAS

Anaerobic Processes

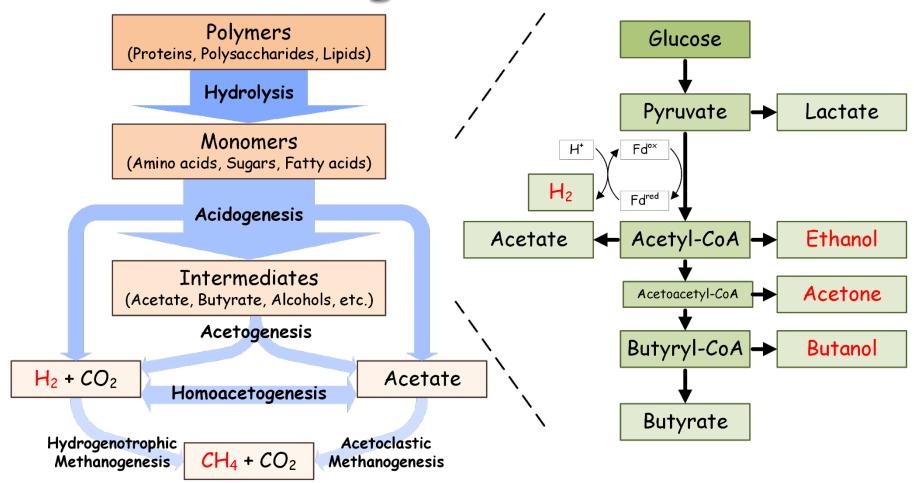


Upflow anaerobic sludge blanket

Biological Conversion of Organic Wastes in Aerobic and Anaerobic Systems

Aerobic Processes

Anaerobic Processes


Wastewater Treatment (Aerobic vs. Anaerobic)

Aspects	Anaerobic	Aerobic	
Energy requirements	Low	Much higher	
Electron acceptor	Organic Carbon	O ₂ (D.O.)	
Degree of treatment	High (90%)	Very High (>95%)	
Sludge production	Very low	Much higher	
Nutrient requirements	Less than 1/5 of aerobic	Higher	
Energy production	Yes (H ₂ , CH ₄)	No	
Effluent quality	Moderate to poor (Higher SS and NH ₄ +-N)	Excellent (Relatively stable)	

Anaerobic wastewater treatment

Solution to wastewater treatment and energy recovery

Anaerobic Digestion



Biofuels can be produced during anaerobic process:

H₂, acetone, ethanol, butanol, CH₄

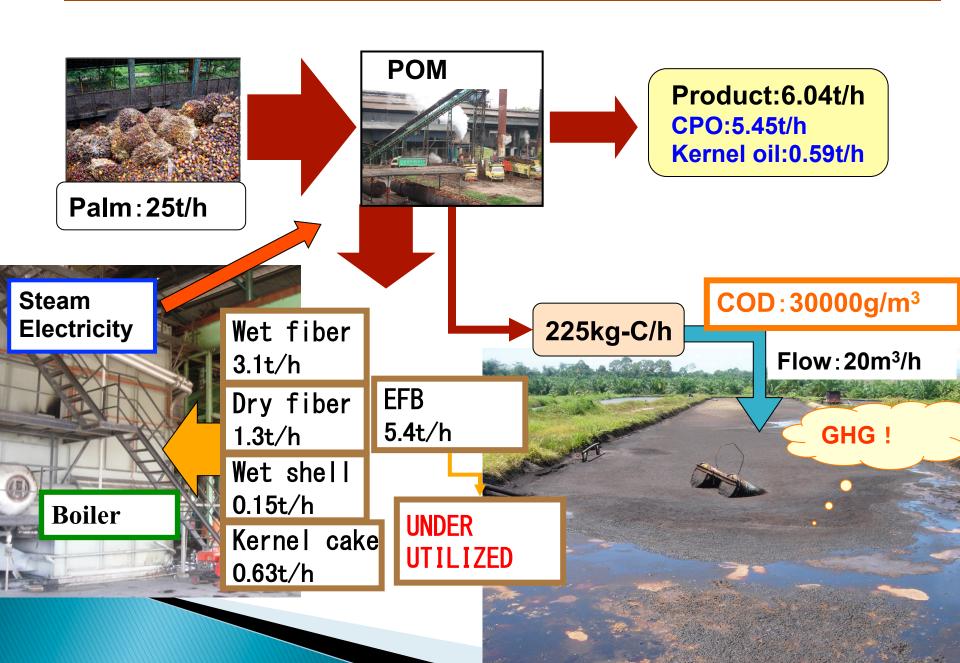
Case study in Oleochemical Industry

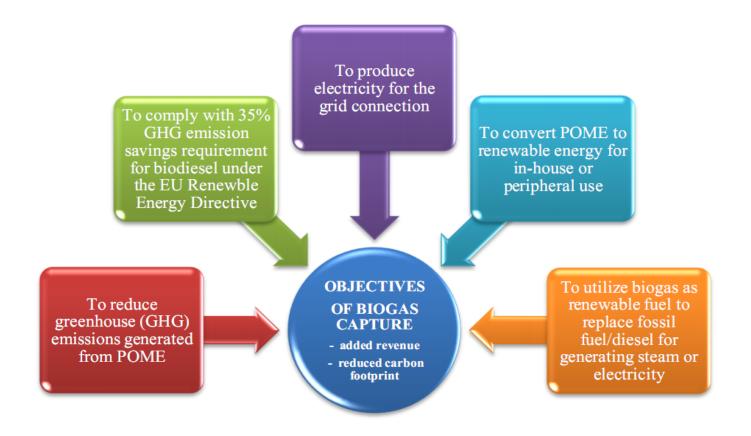
Pilot Scale

700 and 1,500 m3 industrial scale

Case study in energy-drink industry

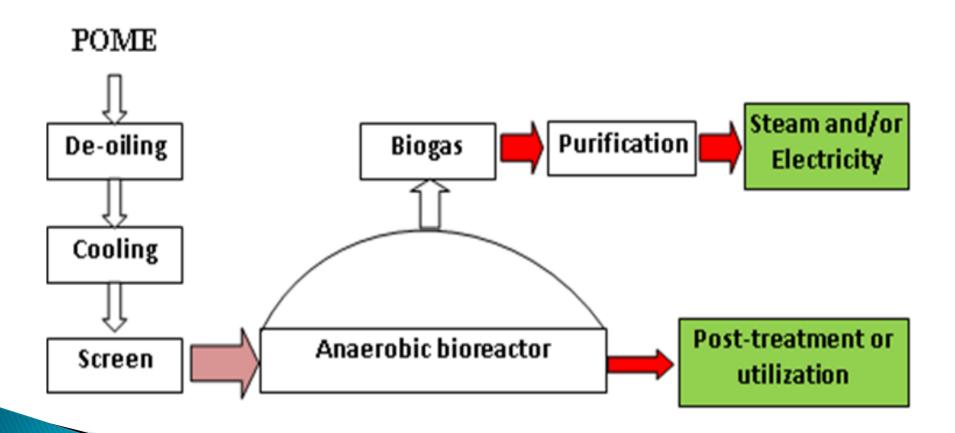
Current condition:


- increase in capacity (Three times),
- wastewater is treated anaerobically and aerobically

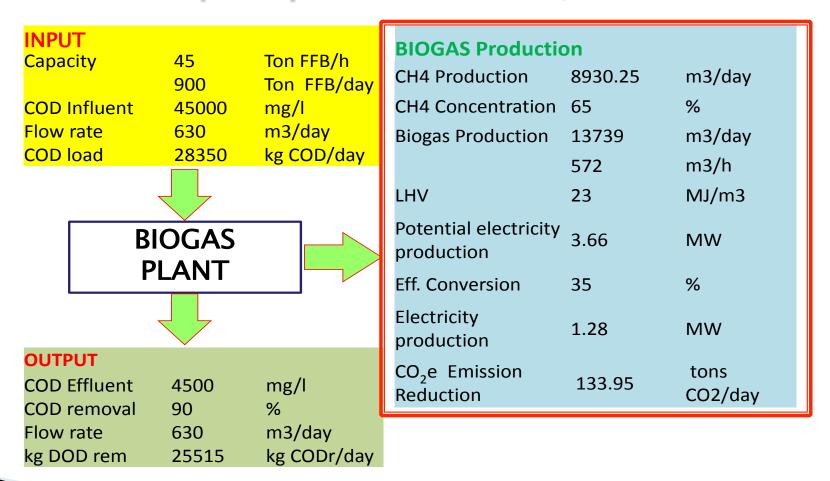

THE CHALLENGES

- Although the application of anaerobic processes are common in certain applications (industries), however this process is still applied rather 'primitively'. such as in the agroindustries throughout Indonesia.
- The application of anaerobic and aerobic processes as energy generators.

Material flow in Palm Oil Mill



Benefits of methane capture from POME and their impact on reducing global and local environmental burden



Udin Hasanudin and Tjandra Setiadi (2016), 'Sustainable Wastewater Management in Falm Oil Mills'. Chapter 27 in 'Green Technologies for Sustainable Water Management' Editor: Ngo et al (2016), ASCE

Process design for the anaerobic treatment and utilization of POME

Potential electricity production and CO₂e emission reduction from POME at a palm oil mill with a capacity of 45 ton FFB/hour

Udin Hasanudin and Tjandra Setiadi (2016), 'Sustainable Wastewater Management' Palm Oil Mills'. Chapter 27 in 'Green Technologies for Sustainable Water Management', Editor: Ngo et al (2016), ASCE

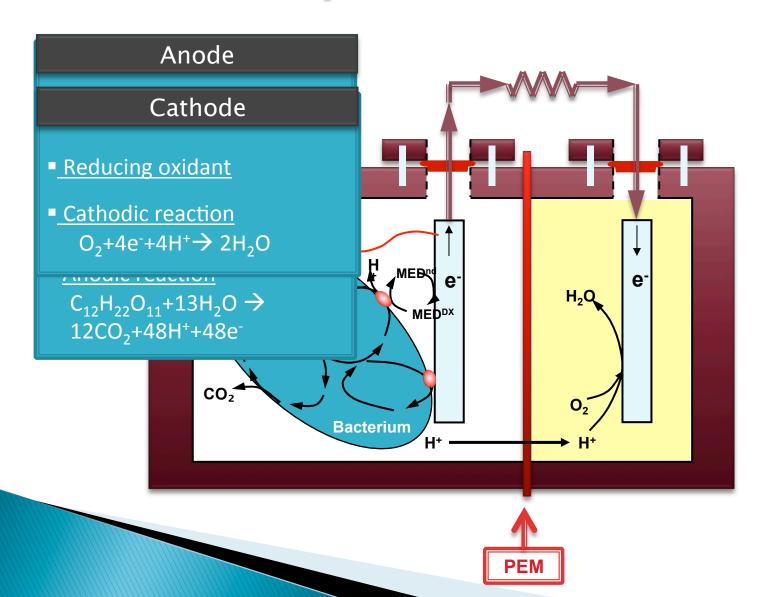
The next challenge >> MICROBIAL FUEL CELLS

- Novel biotechnology for energy generation
- Microbial fuel cells (MFCs) provide new opportunities for the sustainable production of energy from biodegradable, reduced compounds. MFCs function on different carbohydrates but also on complex substrates present in wastewaters.

Microbial Fuel Cell (MFC)

Organic Matters

Electricity


- Occuring in anaerobic condition
- As a wastewater treatment
- Produce sustainable clean energy
- Can use wide range organic compounds as fuels
- Cost effective

R.M. Rachma, V. Reinaldo, A. Muhyinsyah and T. Setiadi. 'Electricity generation from Tapioca wastewater using a Microbial Fuel Cell (MFC)'.

Southeast Asian Water Environment 4. IWA Publishing, London, 2010. pp. 115-120

MFC Principles

Tapioca Wastewater in Indonesia

15 million tons/year

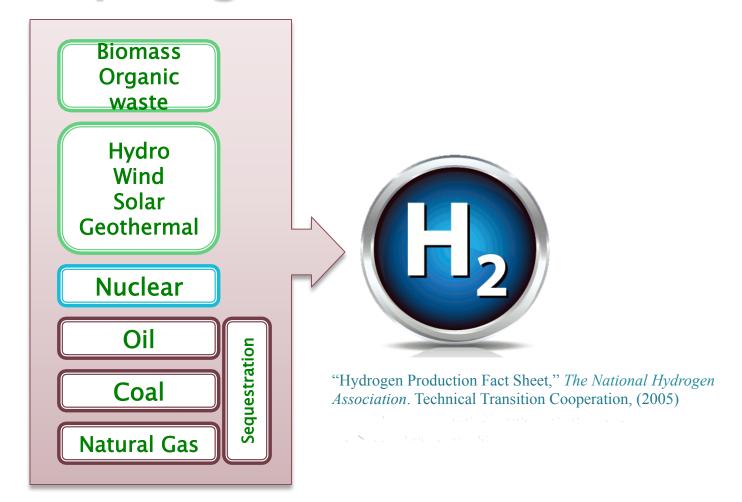
Characteristic of Tapioca Wastewater

high organic content

	Area				
Parameter	Padalar	ang	Sumedang		
-	Range	A /g	Range	Avg	
COD (mg/L)	6000 - 8000	7000	6000 - 12000	9000	
NTK (mg/L)	300 - 670	485	50 - 62	56	
PO ₄ ³⁻ (mg/L)	4000 - 12000	4000	5000 - 5500	5400	
Volatile Fatty Acid (mg/L acetate acid)	30 - 60	45	30 - 100	65,36	
рH	3,6 - 4,4	4	3,6 - 4,4	4	

Hydrogen Production

Introduction


Todays, the primary energy for industries and other human activities are based on fossil fuels.

For the next decade, there will be a dramatic changing on primary energy utilization on industrial countries, changing into alternative fuel

One of the alternative fuel is **Hydrogen**

Billy Andreas, Ilona S. Horvath, Khamdan Cahyari, **Tjandra Setiadi**. (2011). Effects of Acid-Pretreatment of Inoculums and Substrate Concentration for Batch Thermophilic Biohydrogen Production from Starch-Rich Synthetic Wastewater. Proceeding of The 9th International Symposium on Southeast Asian Water Environment. Bangkok, 1–3 Dec. 2011

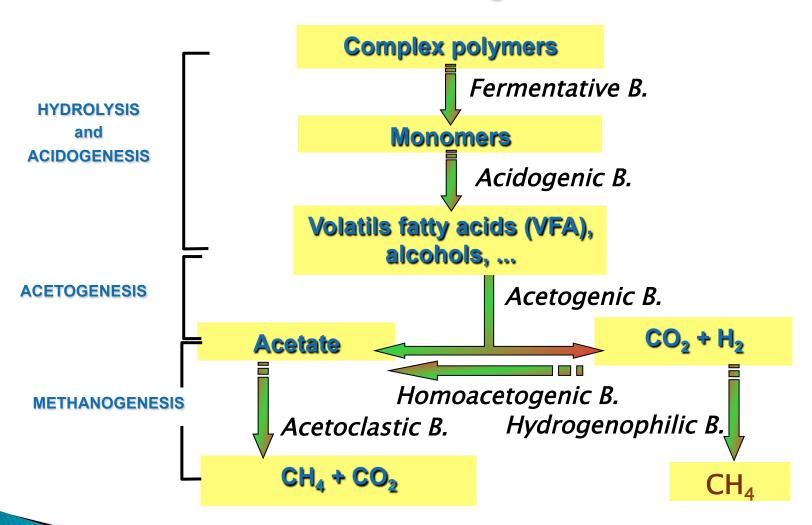
Bio-Hydrogen

Methods	Process	Resources	Energy needs	Emission
Steam reforming		Natural gas	High temperature vapor	+
Thermal	Thermal Gasification Coa		High temperature and pressure of vapor and oxygen	+
	Pyrolysis	Biomass	Relative high temperature vapor	+
Electro		Water	Electricity from wind power, water and nuclear reaction	+
chemistry	Photo electrochemist ry	Water	Sun light	_
	Photo biology	Water and algae	Sun light	_
Biology	Anaerobic Digestion	Biomass		_
	Fermentative Macagranism	Biomass	Association Technical Transition Cooper	_

Metabolism	Organism	Enzyme	Light need	e ⁻ source	Product
Bio photolysis	Green algae	Hydrogenase	Yes	H ₂ O	H ₂ and O ₂
Photo fermentation	Phototropic bacteria	Nitrogenase Hydrogenase	Yes	Organic compound	H ₂ and CO ₂
Water-Gas Shift	Phototropic bacteria	Hydrogenase	No	СО	H ₂ and CO ₂
Dark Fermentation	Fermentation bacteria	Nitrogenase Hydrogenase	No	Organic compound	H ₂ , CO ₂ , and organic acid

[&]quot;Hydrogen Production Fact Sheet," *The National Hydrogen Association*. Technical Transition Cooperation, (2005)

Dark Fermentation


- Dark fermentation has some advantages:
 - Simple technology
 - Best choice for organic waste conversion

Dark fermentation reactions:

$$C_6H_{12}O_6 + H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$$
 $C_6H_{12}O_6 + 2H_2O \rightarrow 2C_3H_7COOH + 2HCO_2 + 2H_2$
 $4C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2C_3H_7COOH + 8CO_2 + 10H_2$ *

^{*} Benemann JR. Biological Production Of Hydrogen-Methane Mixtures For Clean Electricity Production. In: Fifteenth Hydrogen Energy Conference: 2004. Japan.

Anaerobic digestion

		Operation	pH/ temperatur			
Organism	Substrate	mode	-	Nutrition	Yield	References
C. acetobutylicum X9 +		Batch	e -/37 ⁰ C	+		Wang et
E. harbinese B49	crystalline				L-POME	all(2008)
Thermoanaerobacteriu m-rich sludge	POME	Batch	5,5/60 ⁰ C	+	6,33 L H ₂ / L-POME	Thong et all (2007)
C.saccharoperbutylacet	Cheese whey	Batch	6/30 ⁰ C	_	2,7 mol	Ferchichi
	(49,2g		,		,	et all
	laktosa/L)		_		lactose	(2005)
	Glucose (7,5	Batch	6,5/65°C	+		Nguyen et
	g/L)					all (2008)
			0		glucose	
C. beijerinckii L9	Glucose (3g/	Batch	7,2/35 ⁰ C	+	'	Lindkk.,
	L)				H ₂ /mol glucose	(2007)
Mixed culture	Potato	Batch	6,0/-	+	0,1 L H ₂ /g	Van Ginkel
	processing				COD	et all
	wastewater		0			(2005)
Mixed culture	Rice Slurry	Batch	4,5/37 ⁰ C	_		Fang et all
	(5 –CHO/L)				, ,	(2006)
					carbohydra	
NA:	DOME	Damaskal	F.F. (60 ⁰ 6		te	A+:
Mixed culture	POME	Repeated Batch	5,5/60 ⁰ C		L-POME	Atif et all (2005)
Mixed culture	Food waste	Continue	6,5/35°C	-	0,39 L H ₂ /	Han et all
					g COD	(2004)

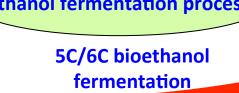
Materials

One kilogram of cassava yields 700 g starch and about 10 L of wastewater and as a carbohydrate-rich wastewater

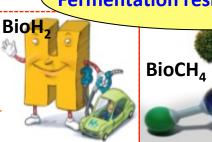
The Future Research on Renewable Energy through Biological Processes

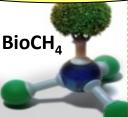
New Generation of Cellulosic Biofuel

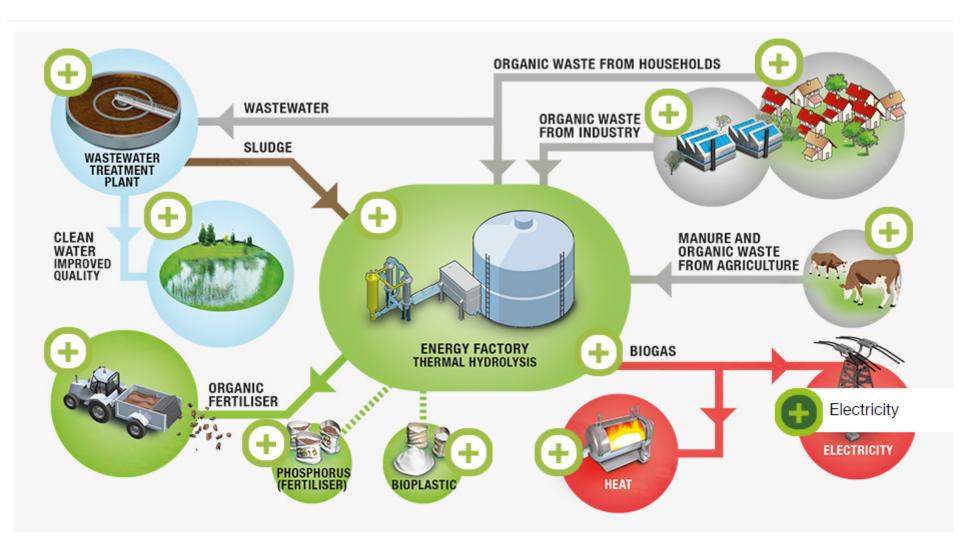
Bioethanol


Innovative hydrolytic enzymes

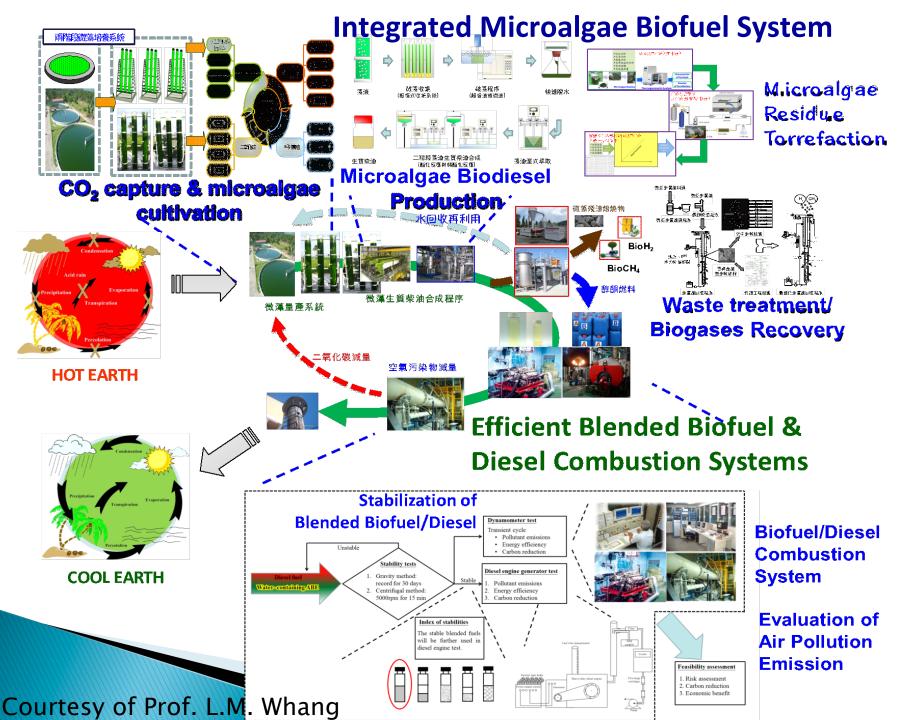
Enzyme mass production


Ethanol fermentation process





Fermentation residue byproducts



Billund BioRefinery - Resource Recovery for the Future

Waste and wastewater are not problems

West Hall

INSTITUT TEKNOLOGI BANDUNG

Thank You....