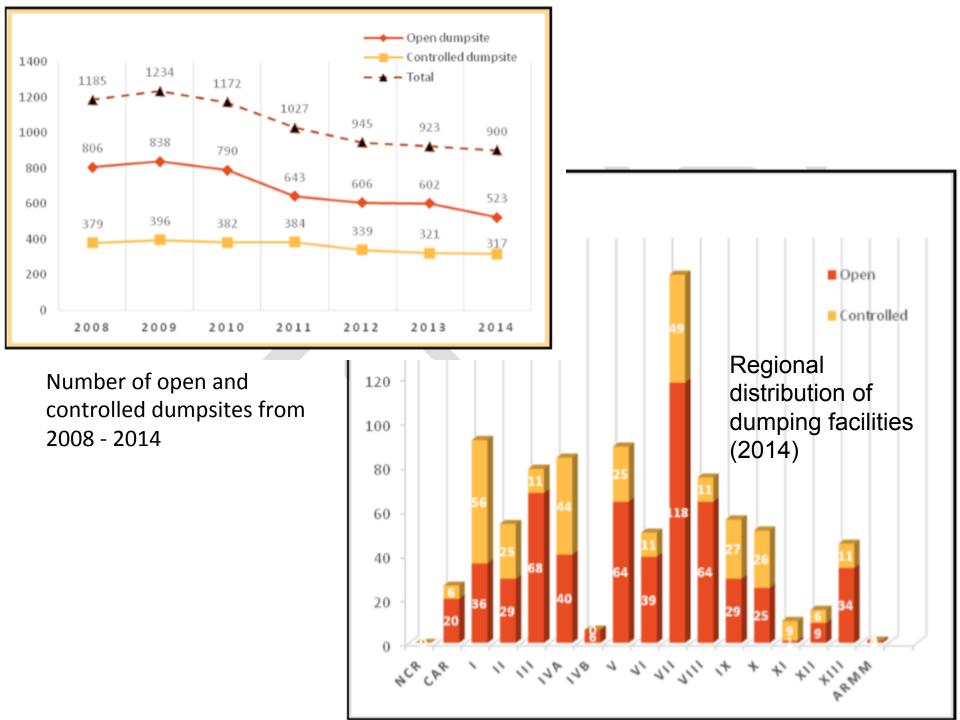

Estimation of landfill gas generation from the Quezon City Controlled Dumping Facility (Payatas)

Maria Antonia N. Tanchuling University of the Philippines Diliman


15 January 2016 3E Nexus Meeting, Danang, Viet

National waste generation rate = 0.4 kg/cap/day Metro Manila waste generation rate = .79 kg/cap/day (NSWMC, 2015)

Policy Overview (Ecological Solid Waste Management Act)

- Segregation at Source (bio-degradable, recyclable)
- Segregated Collection
- Recovery and Processing
- Disposal Management
 - Closure of open dumpsites and controlled dumps
 - Shift to the development of Sanitary Landfills

Study Area

- In the northernmost part of Quezon City (Philippines)
 Operation time since 1973
- Total Area approximately 22 hectares (height up to 40m)
- Average waste intake 1,100 tons/day of MSW from Quezon City

Methane Extraction

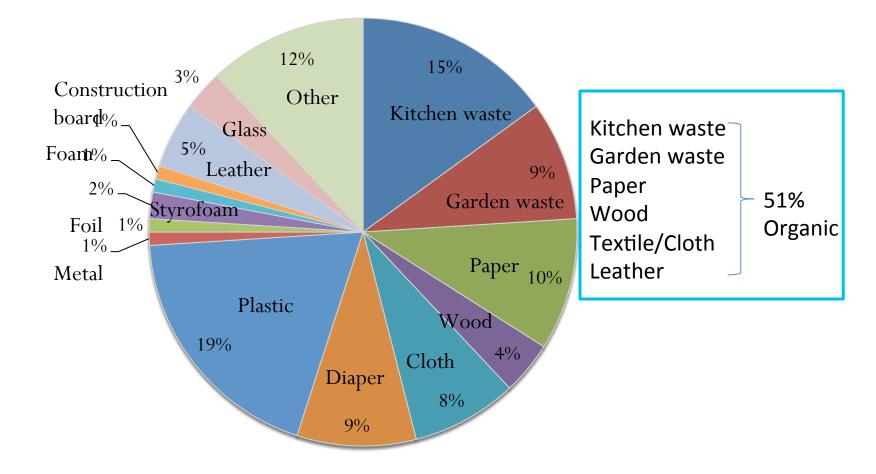
Payatas Dump

Leachate Collection

Sanitary Landfill

Municipal solid waste deposited in Payatas Controlled Dumpsite

Year	MSW (MetricTon/y)	Year	MSW (Metric Ton/y)	Year	MSW (Metric Ton/y)
1988	547,500	1997	547,500	2006	401,500
1989	547,500	1998	547,500	2007	401,500
1990	547,500	1999	547,500	2008	401,500
1991	547,500	2000	547,500	2009	401,500
1992	547,500	2001	401,500	2010	401,500
1993	547,500	2002	401,500	2011	401,500
1994	547,500	2003	401,500	2012	401,500
1995	547,500	2004	401,500	2013	401,500
1996	547,500	2005	401,500	2014	401,500


1988-2000 – Wastes from both Manila and Quezon City 2001-2014 – Wastes only from Quezon City

Waste characterization study (2009)

- Daily waste intake: 1100 tons/day
- Sampling: daily for one month, 10 samples with 0.084m³ volume were randomly selected after the waste pickers have collected the items that were valuable to them
- Manually sorted by waste pickers

Payatas waste composition (2009 study)

LandGEM (US EPA)

$$Q_{CH_{4}} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} kL_{0} \left(\frac{M_{i}}{10}\right) e^{-kt_{ij}}$$

 Q_{CH4} = annual methane generation in the year of the calculation (m³/year);

i=1 = year time increment;

n = (year of the calculation) - (initial year of waste acceptance);

j=0.1 = year time increment;

<u>k = methane generation rate (year⁻¹);</u>

 L_{o} = potential methane generation capacity (m³/Mg);

 M_i = mass of waste accepted in the ith year (Mg);

 t_{ij} = age of the jth section of waste mass Mi accepted in the ith year (decimal years, eg., 3.2 years)

IPCC Method to compute Lo

- Lo = [MCF DOC DOCF F 16 / 12 (Gg CH4/Gg waste)]
- MCF = Methane correction factor (fraction)
- DOC = Degradable organic carbon [fraction (Gg C/Gg MSW)]
- DOCF = Fraction DOC dissimilated
- F = Fraction by volume of CH4 in landfill gas

SWDS CLASSIFICATION AND METHANE CORRECTION FACTORS

Type of Site	Methane Correction Factor (MCF) Default Values
Managed	1.0
Unmanaged – deep (>5m waste)	0.8
Unmanaged – shallow (<5m waste)	0.4

DOC (Degradable Organic Carbon) DOC = $(0.4 \cdot A) + (0.17 \cdot B) + (0.15 \cdot C) + (0.3 \cdot D)$

A = Fraction of MSW that is **paper and textiles**

B = Fraction of MSW that is <u>garden waste</u>, <u>park waste</u> or other non-food organic putrescibles

- C = Fraction of MSW that is **food waste**
- D = Fraction of MSW that is **wood** or straw

Determination of k (methane generation rate)

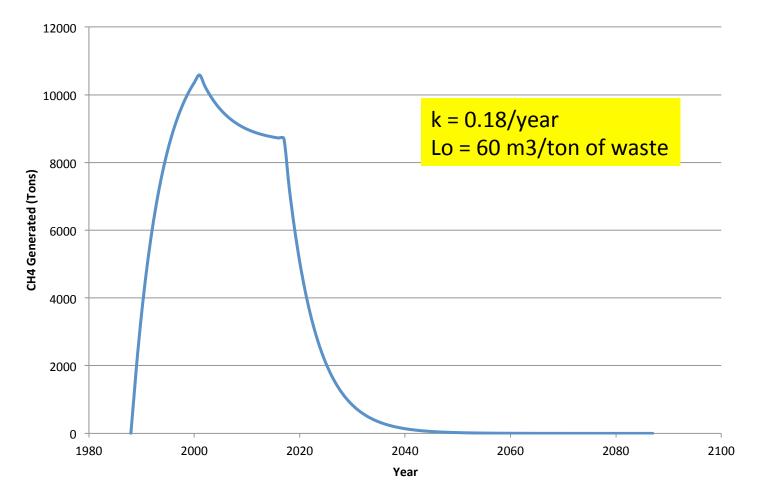
- Moisture content of the waste mass
- Availability of the nutrients for microorganisms that break down the waste to form methane and carbon dioxide
- pH of the waste mass, and
- Temperature of the waste mass
- Default value for US landfills: k = 0.05/y
- For Philippines: k = 0.18/y

LandGEM Philippine Model

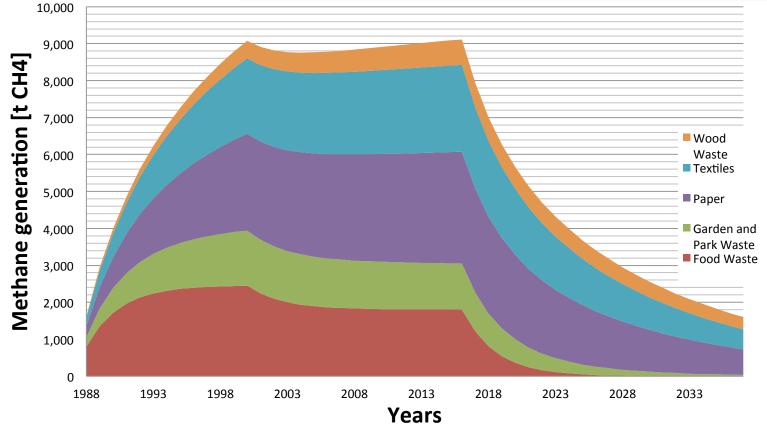
- Landfill Methane Outreach Program
- Runs on *Excel* Program
- k = 0.18/yr
- Lo = 60 m3/ton
- LMOPPhilippinesModel_v1-0-payatas.xls

Model Parameters

Parameters	
Landfill Name	Payatas Controlled Dumpsite
Landfill Open Year	1988
Landfill Closure Year	2016
Methane Generation Rate, k (y ⁻¹)	0.18
Potential Methane Generation Capacity, L_0 (m ³ /t)	60


Characteristics of the dumping facility

- Wastes properly compacted
- Leachate seeps along side slopes
- Average depth is greater than 10m
- Cover material is applied weekly
- No clay or geosynthetic liners used



LandGEM modeling results

Using sitespecific data

Waste stream	waste composition	DOC (wet waste)	Decay rate k
Food Waste	15%	15%	0.400
Garden and Park Waste	9%	17%	0.170
Wood Waste	4%	30%	0.035
Paper	10%	40%	0.070
Textiles	13%	24%	0.070

Conclusions and recommendations

- Methane can and should be recovered and utilized, instead of being released to the atmosphere
- LandGEM is a user-friendly model that can be used to estimate landfill gas generation
- More data needed to determine site-specific inputs for k and Lo
- Important to document waste intake and its composition
- Validation of model is needed

Maraming salamat!

martin an Alla t. 1