

Development of JCM Projects toward a Sustainable Low-Carbon Society in Indonesia Tjandra Setiadi, Ph.D. Centre for Environmental Studies, ITB, Bandung, Indonesia

Da Nang, Vietnam, 14-15 January 2016

Content

Introduction of the Workshop

Basic of JCM

JCM Project Proposal

Green Industry Policy in Indonesia

Low Carbon Society

Potential Projects of JCM in Indonesia

Conclusions

Introduction of The Workshop

WORKSHOP ON 3E NEXUS AND DEVELOPMENT OF JOINT CREDITING MECHANISM (JCM) PROJECTS TOWARD A SUSTAINABLE LOW-CARBON SOCIETY IN INDONESIA

17 December 2015

Pusat Studi Lingkungan Hidup - Institut Teknologi Bandung

USAT STUDI LINGKUNGAN HIDUP STITUT TEKNOLOGI BANDUNG

The participants were from government, industries, Indonesia JCM secretariat, and universities.

Basic of JCM

MRV methodologies will be developed by the Joint Committee

Facilitating of technologies transfer and contributing to sustainable development in developing countries

Evaluating contributions to GHG emission reduction and use them to achieve Japan's reduction target

Facilitating global actions for GHG emission reduction, complementing CDM

JCM Scheme in Indonesia

Structure of the Indonesia Joint Committee

JCM Project Proposal in Indonesia Secretariat

Initiation of JCM Feasibility Studies Project from Host Country

Identify Project	 Short proposal development Team in could be established Coordination with JCM secretariat 		
Identify Host Institution in Japan	 JCM secretariat will help find partner In particular case, partner is not necessary 		
Proposal Development	 Project idea development should be discussed with JCM secretariat Co-benefit should be identified Proposal should be developed by Japanese host 		

Key Points in Proposal Development

Follow format strictly	Apply proposed methodology to calculate CER or other parameters	Appropriate reduction efficiency (Yen/t-CO ₂) is required
Co-benefit should be clearly stated (quantitative evaluation is preferred)	Project size should not be very small	Applicable to other facilities, cities or countries are preferred (good model)

Green industry in Indonesia policy: Industry which places priority on **efficiency** and **effectivity** in the sustainable use of resources, to harmonize industrial development and environmental protection.

Green industry is one of Indonesia goal: to achieve self-sustaining, competitive and advanced industry, as well as green industry.

Energy sources target of Indonesia government

Target of Energy Conservation in Industry

Sector	Energy Consumption Per Sector Year 2012 (Million BOE)	Potential of EC	Sectoral Target of Energy Conservation (2025)
Industry	305 (39,7%)	10 - 30%	17%
Transportation	311 (40,4%)	15 - 35%	20%
Household	92 (12%)	15 - 30%	15%
Commercial	34 (4,4%)	10 - 30%	15%
Others (Agriculture, Construction, and Mining)	26 (3,4%)	25%	-

Note:

- Based on Handbook of Energy & Economic Statistics of Indonesia 2013

- Exclude biomass and non-energy used

source: National Energy Conservation Master Plan (RIKEN) Draft 2011

Components of Green Industry. JCM contributes especially in low carbon technology projects.

Low Carbon Society

Low Carbon Society: Activities of a society which result in low carbon emission by changing people lifestyle, city design, country's development pathway, and economic structure.

LCS goal: To limit the increase of global world average temperature of 2°C in the mid of this century

Low Carbon Society

Indonesia INDC (Intended Nationally Determined Contribution)

Potential Projects of JCM in Indonesia

Palm oil industries does not consume much fossil fuel because they use biomass. GHG emission from its effluent (POME) is **large**

Estimation of GHG emission from POME

Deremeter	l leit	Value		
Palameter	Unit	Min	Max	
COD of fresh POME	mg/l	43,375	60,400	
COD of treated POME	mg/l	5,500	9,000	
POME production	m ³ /ton FFB	0.55	0.65	
COD removal	kg/ton FFB	20.83	33.41	
IPCC default value*)	kg CH ₄ /kg COD removal	0.25		
CH ₄ production	kg/ton FFB	5.21	8.35	
IPCC default value*)	m ³ CH ₄ /kg COD removal	0.35		
CH4 production potential	m ³ CH4/ton FFB	7.29	11.69	
GWP potential of CH ₄ ^{*)}	kg CO ₂ e/ kg CH ₄	2	21	
GWP potential	kg CO ₂ e/ton FFB	109.41	175.35	
*) IPCC, 2006				

Advantages of methane captures

Produce renewable energy for inhouse used

Produce electricity for grid connection OBJECTIVE OF BIOGAS CAPTURE FROM POME

- Increase revenue

- Reduce carbon footprint

Reduce GHG

emission

Replace fossil fuel for generating steam and electricity

> Emission Reduction ± 30-80% depend on Method

Methane capture methods: anaerobic digestion and co-composting. By coupling these methods, emission could be further reduced.

Propose Sustainable POME treatment and Utilization

2. Energy Sector

Past Development and Trend of Energy Sector in Indonesia

2. Energy Sector

For achieving LCS, **decarbonization** pathway is required

2. Energy Sector

Result of Decarbonization (projection)

3. Research Mapping for Adaptation and Mitigation

Purpose: Collection of emission reduction & carbon credits data by University \rightarrow ITS, Surabaya, Indonesia

Data include: adaptation, mitigation, measurement &

analysis from several sectors:

- Residential CO2 emission
- Emission from energy usage
- Solid waste burning

- Green space
- Human behavior
- Forestation
- Using satellites to adapt and mitigate
- Effects of climate change to water resources
- Low emission energy

4. Summary of JCM FS in Indonesia (2010 – 2015)

Conclusions

- 1. JCM is one of useful tools for achieving the low carbon society and green industry.
- 2. JCM is relatively new and has many weakness, cooperation between JCM secretariat, government, industries, and universities is needed.
- 3. JCM can be used to raise awareness among the ministries and provide methodologies for MRV.
- 4. There are abundant potential projects for JCM implementation in every sectors of industry in Indonesia.
- 5. This workshop resulted a better understanding and insight to industries, universities and government.

Acknowledgements

- 1. Mr. Dicky Edwin Hindarto, Indonesia JCM Secretariat
- 2. Prof. Kensuke Fukushi, Japanese JCM Project Evaluation Committee
- 3. Mrs. Shinta D. Sirait, Ministry of Industry Indonesia
- 4. Prof. Udin Hasanudin, Agroindustrial Waste Management Lab. UNILA
- 5. Dr. Retno Gumilang Dewi, Center for Energy Policy ITB
- 6. Dr. Arie D. Syafei, Air Pollution Control and Climate Change Lab. ITS

West Hall INSTITUT TEKNOLOGI BANDUNG

